Contents

I. Introduction .. 1
II. Supported Devices ... 1
III. Accessories .. 2
IV. Host Computer Requirements ... 3
V. Installation ... 3
VI. Hardware Specification ... 3
VII. DOS Operation Introduction ... 4
 1. Path File Operation under DOS .. 4
 2. Windows Operation under DOS .. 7
 A. TYPE ... 7
 B. WICE ... 7
 C. DISK .. 8
 D. HELP ... 11
 E. PROCESS .. 12
 F. PARAMETER ... 13
 G. Window software operating example 13
VIII. Set Up Windows Software .. 14
IX. Windows Operation ... 16
 1. Introduce File ... 16
 2. Process-WICE control box .. 19
 3. Buffer ... 21
 4. Option ... 25
 5. Help ... 25
 6. Window .. 26
I. Introduction

WICE-4/8MA is a high performance in-circuit emulator for developing and debugging ROM/SRAM applications. It offers real-time emulation up to 8M bit.

WICE-4/8MA interface to an IBM PC or clone via the printer port. It is able to be driven under DOS or Windows 3.1/95.

It is mainly a manual for WICE-8MA, if you buy a WICE-4MA, the operation is the same as WICE-8MA.

II. Supported Devices

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Quantity</th>
<th>Device</th>
<th>Low voltage Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>2K</td>
<td>2</td>
<td>2716</td>
<td>-</td>
</tr>
<tr>
<td>4K</td>
<td>2</td>
<td>2722</td>
<td>-</td>
</tr>
<tr>
<td>8K</td>
<td>2</td>
<td>2764</td>
<td>-</td>
</tr>
<tr>
<td>16K</td>
<td>2</td>
<td>27128</td>
<td>-</td>
</tr>
<tr>
<td>32K</td>
<td>2</td>
<td>27256</td>
<td>-</td>
</tr>
<tr>
<td>64K</td>
<td>2</td>
<td>27512</td>
<td>-</td>
</tr>
<tr>
<td>128K</td>
<td>2</td>
<td>27010</td>
<td>27LV010</td>
</tr>
<tr>
<td>256K</td>
<td>2</td>
<td>27020</td>
<td>27LV020</td>
</tr>
<tr>
<td>512K</td>
<td>1</td>
<td>27040</td>
<td>27LV040</td>
</tr>
<tr>
<td>64K</td>
<td>1</td>
<td>271024</td>
<td>27LV1024</td>
</tr>
<tr>
<td>128K</td>
<td>1</td>
<td>272048</td>
<td>27LV2048</td>
</tr>
<tr>
<td>256K</td>
<td>1</td>
<td>274096</td>
<td>27LV4096</td>
</tr>
<tr>
<td>2K</td>
<td>2</td>
<td>6116</td>
<td>-</td>
</tr>
<tr>
<td>8K</td>
<td>2</td>
<td>6264</td>
<td>-</td>
</tr>
<tr>
<td>16K</td>
<td>2</td>
<td>62256</td>
<td>-</td>
</tr>
<tr>
<td>32K</td>
<td>2</td>
<td>628128</td>
<td>-</td>
</tr>
<tr>
<td>Capacity</td>
<td>Quantity</td>
<td>Device</td>
<td>Low voltage Device</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2K</td>
<td>2</td>
<td>2716</td>
<td>-</td>
</tr>
<tr>
<td>4K</td>
<td>2</td>
<td>2732</td>
<td>-</td>
</tr>
<tr>
<td>8K</td>
<td>2</td>
<td>2764</td>
<td>-</td>
</tr>
<tr>
<td>16K</td>
<td>2</td>
<td>27128</td>
<td>-</td>
</tr>
<tr>
<td>32K</td>
<td>2</td>
<td>27256</td>
<td>-</td>
</tr>
<tr>
<td>64K</td>
<td>2</td>
<td>27612</td>
<td>-</td>
</tr>
<tr>
<td>128K</td>
<td>2</td>
<td>27010</td>
<td>27LV010</td>
</tr>
<tr>
<td>256K</td>
<td>2</td>
<td>27020</td>
<td>27LV020</td>
</tr>
<tr>
<td>512K</td>
<td>2</td>
<td>27040</td>
<td>27LV040</td>
</tr>
<tr>
<td>1024K</td>
<td>1</td>
<td>27080</td>
<td>27LV080</td>
</tr>
<tr>
<td>64K</td>
<td>1</td>
<td>271024</td>
<td>27LV1024</td>
</tr>
<tr>
<td>128K</td>
<td>1</td>
<td>271024</td>
<td>27LV1024</td>
</tr>
<tr>
<td>256K</td>
<td>1</td>
<td>274096</td>
<td>27LV4096</td>
</tr>
<tr>
<td>512K</td>
<td>2</td>
<td>6116</td>
<td>-</td>
</tr>
<tr>
<td>1K</td>
<td>2</td>
<td>6264</td>
<td>-</td>
</tr>
<tr>
<td>32K</td>
<td>2</td>
<td>62256</td>
<td>-</td>
</tr>
<tr>
<td>128K</td>
<td>2</td>
<td>628128</td>
<td>-</td>
</tr>
<tr>
<td>512K</td>
<td>2</td>
<td>628512</td>
<td>-</td>
</tr>
</tbody>
</table>

P.S. Low voltage type must have 3.3V adaptor and switch to 3.3 voltage selection.

III. Accessories

1. Standard Accessories:
 * WICE-4/8MA mainframe x 1
 * 26-pin cable x 1
 * 32-pin single connector flat cable x 1
 * 32-pin double connector flat cable x 1
 * 16 bit 40-pin module + flat cable x 1
 * 4 signal line hook x 1
 * 28-pin IC socket x 2
 * System software disk x 1
 * User manual x 1
WICE-4/8MA USER'S MANUAL

* DC power adaptor x 1
* 3.3V adaptor x 2

2. Option
* 28F002 module driver
* PLCC adaptor

IV. Host Computer Requirements
*IBM PC or compatible computer (above 386)
*MS-DOS VER 3.0(or above); Windows 3.1/95

V. Installation
1. Plug one head of 26-pin cable in WICE-4/8MA, and another head in printer port.
2. Switch the selector to choose which voltage device you want to emulate. For example, you want to emulate 5V device then switch the selector to 5V.
3. Plug adaptor in 110V power socket and the other head in WICE-4/8MA DC IN.
4. If you want to emulate 3.3V device, add 3.3V adaptor is needed. Then plug 32-pin cable in WICE-4/8MA.
5. Install the system software. (key in INST8MD.EXE under DOS)
6. Run the software.

VI. Hardware Specification
1. Transmit by printer port.
2. One printer port can control 2 units of WICE-4/8MA.
3. The switch is able to be adjusted to 3.3V or 5V.
 (Note: There is no reverse protection when the switch is at 3.3V if
 without 3.3V adaptor.)
4. Signal line is able to control RESET or HOLD on target board.

VII. DOS Operation Introduction

Note: Change W8 into W4 if you operate WICE-4MA.

1. Path File Operation under DOS

 [/LPTn] [/Nn] [/Snnnnnn] [/V]

 (1) [d:] [path] file name: the files which users need to be simulated,
 include set the disk number/path/file name/accessory file name.

 (2) [/type]: assign the name of device
 [/16] or [/2716] = 2K 8bits
 [/32] or [/2732] = 4K 8bits
 [/64] or [/2764] = 8K 8bits
 [/128] or [/27128] = 16K 8bits
 [/256] or [/27256] = 32K 8bits
 [/512] or [/27512] = 64K 8bits
 [/1024] or [/271024] = 128K 8bits
 [/2048] or [/272048] = 256K 8bits
 [/4096] or [/274096] = 512K 8bits
 [/8192] or [/278192] = 1024K 8bits

 (3) [/#ID]: assign the emulator. One printer port is able to control
 two units of WICE-4/8MA and each WICE-4/8M has two port.
 [/#1A]=WICE-#1A
[/#1B]=WICE-#1B
[/#2A]=WICE-#2A
[/#2B]=WICE-#1B

(4) [/EVEN]: set the data of even position loaded
(5) [/ODD]: set the data of odd position loaded
(6) [/RESET]: set the reset signal after transmission, reset the circuit.
(7) [/LPTn]: select the number of Printer Port, n might be 1-4. If you do not want to set this parameter, it will automatically set to "LTP1".
(8) [/Snnnnnn]: select the beginning position of loaded files.
(9) [/V]: verify the data which is from PC to WICE-4/8MA to make sure the correction of the data.
(10) [W8/?]: mention that the way to set parameter. It will show you like following.

Example:
W8 TEST. BIN /010 /V
Emulate 27010 from file TEST.BIN to port A
The error message

1. Have not source file name enter!
 without assigning the source of the file name
2. Source file not found!
 could not find the source file
3. Source file read error!
 the error made from reading source file
4. Source file not *.EXE file or bad!
 the source file is not *.EXE or the file length is not enough
5. Illegal start offset address!
 the start address is wrong
6. Start offset > file length!
 the start address is longer than the file length
7. Illegal download source file allocate to device number
 Error in downloading source file allocate to device number
8. Download data to WICE-8MA error!
 the error from transmitted verification
9. Check the power and the cable of WICE!
 make sure the connection of power and the cable of WICE
10. Port B not ready check Port B please!
 please check Port B if it is ready
11. WICE hardware do not define parallel port (LPTn)!
 WICE hardware do not define parallel port address
2. Window Operation under DOS

Key in WICE-4/8/MA under this path and get into main chart.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>WICE</th>
<th>DISK</th>
<th>HELP</th>
<th>PROCESS</th>
<th>PARAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>: set the type of output</td>
<td>: the function of output/input</td>
<td>: disk loading operating system</td>
<td>: operating introduction and EPROM pinout introduction</td>
<td>: process the data in buffer</td>
<td>: set the parameter</td>
</tr>
</tbody>
</table>

A. TYPE:

Set the IC type and output position

[T] Set emulator type

According to IC position for choosing the type of IC

B. WICE:

Transmit the data from buffer to WICE.

1. [M] Move data block to WICE

Move buffer data from 0000 position to WICE

2. [Shift] [M] Move any block to WICE

User can transmit any block data to WICE
3. [R] Read WICE data into buffer
 Read the data from WICE into buffer
4. [N] Read WICE data check sum
 Calculate and show the data check sum
5. [V] Verify WICE/Buffer data
 Verify the difference between WICE and buffer, if there are differences it will show you the address and the data.
6. [Ctrl] [C] Clear WICE data to "FF"h
 Clear WICE data to "FF"h
7. [E] Move data with error check
 Examine error while transmitting data
8. [1] Reset target board (Pluse)
 Send the pulse signal to target board, it is a signal which is from high to low and then back to high.
9. [Shift] [1] Change RESET Output state
 Change RESET output state from high to low or from low to high.
10. [2] Change "HOLD" output state
 Change HOLD output state from high to low or from low to high.
11. [3] Change "USER" output state
 Change USER output state from high to low or from low to high.
12. [Z] Change memory (cache) segment
 Change memory cache segment

C. DISK
 Disk loading operating system.
1. [Ctrl] [D] List disk directory
 List the file name/length/date in the disk
2. [L] Load disk data file to buffer
 Download disk files to PC buffer, it will list 26 types of
 transmission format. Normally, it is [2] Binary/Machine
 Code or [3] Intel HEX format. You do not have to key in the
 file name, simply use A:*.* to list the data in the file and
download it by using the cursor.

3. [S] Save buffer data to disk
 Save buffer data to floppy or hard disk

4. [Shift] [L] Load encryption data to buffer
 load encryption data to buffer

5. [Shift] [S] Save encryption data to disk
 Save encryption data to disk

6. [Ctrl] [M] Define macro key
 User define macro key to buffer
 Macro key capture: [] you can set from F1 to F10
Macro key remark: [] key in the note of file name
Example:
Set the procedure in ROM.BIN into macro key.
(1) Press [Ctrl] [M] and do the set-up like following:
 Macro key capture: [F2]
 Macro key remark: [ROM.BIN]
(2) Press [Enter]
(4) Press [Enter] to load A: *. then [Enter], after listing file name move the cursor to ROM.BIN
(5) Press [Enter], choose the start address 0000. Press [F] to select blank and fill the data. Then press [Enter] to start loading.
(6) Press [Ctrl] [M] to end the set-up procedures
 Note: You can press [F2] to repeat above procedures.
7. [Ctrl] [E] Erase macro key
 Erase the set-up macro key
8. [Ctrl] [T] List macro key
 List macro key and its explanatory notes
9. [Ctrl] [L] Load macro key file
 Load macro key file to buffer, it will automatically load UNIV.KEY when you get into the system.
10. [Ctrl] [S] Save macro key file to disk
 Save macro key file to disk
11. [Shift] [T] View text file
 View text file on screen, the function is the same as "type" in DOS.
12. [Ctrl] [I] Rest time, system lock
 Rest time which you can set password to avoid someone else usurp the data.
13. [0] To decompose big file (>262K)
 Decompose big file into small one. Please refer to HELP.
14. [W] Select mega buffer file
 Select mega buffer in disk
15. [Shift] [I] Initial mega file buffer file in disk
 Product 1MEGA buffer in disk
16. [Ctrl] [Q] Exit, Return DOS
 End of work, press [S] SAVE all parameter and file then exit
 Press [Y] EXIT return to DOS, not saving the data
 Press [N] No not leaving the emulator software

D. HELP
Operating introduction and pin configuration
1. [H] HELP
 Operating introduction, you can check by [Pgup] [Pgdn]
2. [I] Device information
 Provide IC pin configuration
E. PROCESS
Process the data in buffer.
1. [D] Dump/Edit buffer data
 Showing the whole buffer data which contain HEX/ASCII to edit. It will show you the binary, hexadecimal and ASCII CODE of code format.
 Key in [Ctrl] [E] to edit HEX
 [Ctrl] [A] to edit ASCII
 [Ctrl] [D] to go the data you want to examine
 [ESC] back to main screen
 This function will provide you a easy way to DUMP and EDIT. You can press [Ctrl] [F2] into a special process buffer
2. [U] Display buffer used map
 Show the current buffer condition to provide users analyzing
3. [Shift] [D] Edit encryption table
 Provide a spare buffer (256K byte) to process input password, like encryption code
4. [Shift] [C] Buffer data lock/unlock
 Protect the data in main buffer. You may retrieve the data by processing the same password.
5. [Ctrl] [N] Read memory check sum
 Read memory check sum from buffer
6. [Ctrl] [F] Buffer fill (FFh) data
 Fill buffer with FFh data
7. Buffer fill (00h) data
 Fill buffer with 00h data
8. Fill sequential word into all
 Fill buffer with sequential word
9. Fill sequential byte into all
F. PARAMETER

Set the parameter.
1. [Shift] [A] 8 bit BUS all address
 Transmit 8 bit data from buffer to WICE-4/8MA
2. [Shift] [E] 16 bit BUS Even address
 Transmit 16 bit ,Even data from buffer to WICE-4/8MA
3. [Shift] [0] 16 bit BUS Odd address
 Transmit 16 bit ,Odd data from buffer to WICE-4/8MA
4. [Ctrl] [0] Select printer port
 Select printer port

G. Window software operating example

Transmit BIN of 27010 to drive# on WICE-4/8MA.
1. Press [TYPE] and select [0] WICE#A (27010) to set the size
 of WICE#A
2. Select [L] Load disk data file to buffer in DISK, it will show you 26 transmission types. Choose Binary/Machine code, then [Enter], the start address is (00000), [Enter], Fill 0/FF/No: [N], then the data is loading in buffer.
3. Select WICE key in [E], it will show you [WICE-1#A (27010)-378 address is A], then press [Enter] for transmitting the data to drive #A.
4. Turn on target board

VIII. Set Up Windows Software

1. Standard Requirements
 * IBM PC or compatible computer (above 386)
 * 10M hardisk space
 * WINDOWS 3.1/95
 * 8M RAM

2. Installation Procedures
 [A] Please back up your software disk.
 [B] Turn on your computer and set the Windows in, please in the
"SETUP DISK" and execute the "SETUP.EXE" in order to set the WICE-4/8MA main program into computer.

[C] Your screen will show the dialogue to choose the set-up path, please key in the path of the file that you want to install.

[D] When you finish the set-up, it appears a new program in your Windows explorer.

[E] You can check WICE-4/8MA chart twice to execute the main program.

3.Connect WICE-4/8MA

Introduction:
Please follow the procedures to connect the WICE-4/8MA with PC.
Connection Procedure:
[A] Plug one head of cable in WICE-4/8MA and the other head in printer port.
[B] Turn it on and execute the WICE-4/8MA main program.
[C] Select Process-WICE control box on the MENU and turn into WICE Control Box.(Or click the third button on Tool bar).
[D] Take a look at WICE DRIVE SELECT, if it is dissolved then it doesn't connected. You can click Auto Detect WICE in WICE Control Box, do the detection again.
[E] Click Auto Detect WICE, if it is still dissolved then check [A] [B] and repeat [C] [D] [E].

IX. Windows Operation

WICE-4/8MA MENU

Menu Introduction
File : functions of file process
Buffer : function of file editing
Process: hardware process
Option : working environment option
Help : on line help
Window : re-arrange windows

1. Introduce File
Load: load in a old file
It will show you a Dialog box like following

- Path : to select load path
- Name : to select load name
- File format : to select file format Buffer
- size : to select buffer range (max 16Mbyte)
- Source : to select the start file address and end address
 (Program will self-judge if the input correct or not)
- Destination : to select the buffer destination start address for
 disk and input unused block.
- unused fill : unused data fill.
- Browse : to select file by browse
Save: save files
It will show you a Dialogue box like following.

Path : to select save path
Name : to select save name
File format : to select file format
Select buffer range : to select buffer range (Program will self-
judge if the input correct or not)
Destination : to select the buffer destination start address
 for disk and input unused block.
unused fill : unused data fill.
Browse : to select file by browse
Buffer range : to fill the buffer range in the destination
File range : to use file range to fill select buffer range

Close: close the current window (current window is focus window)

Exit: exit current program
2. Process-WICE control box

Introduction
Mainly to open the "WICE control box" dialog and control the hardware of WICE-4/8MA. Explain the approach like following about "WICE control box"

[WICE control box]

WICE DRIVE SELECT
To select the device number of emulation device.

SOURCE
Select the data which will transmit to WICE-4/8MA

PROGRESS
Show the progress at the present
Start address
Select the start address of transmission

Transfer with verify
Verify data while transmitting, but it delay the transmitting time

Move data block to WICE
Transmit data to WICE-4/8MA

Read WICE data into buffer
Read data from WICE-4/8MA

Read WICE data check sum
Read data check sum from WICE-4/8MA

Verify WICE/Buffer data
Verify the data in buffer and WICE-4/8MA

Check sum
Show the check sum of data

USER
Hi: turn the USER test hook to high level voltage
Low: turn the USER test hook to low level voltage

HOLD
Hi: turn the HOLD test hook to high level voltage
Low: turn the HOLD test hook to low level voltage
RESET
Pluse: In RESET test hook, it will output pulse from Low to High
Hi: turn the RESET test hook to high level voltage
Low: turn the RESET test hook to low level voltage

Auto Detect WICE
Detect the connection of WICE-4/8MA
Note: It will delay transmitting time while you choose "Transfer with verify".

3. Buffer

New: open a new edit window to use a blank buffer
Jump: move the cursor to an address where you would like to go.

Just fill the address and press OK, then you can go there quickly.

Block: for copy, or move, or exchange the block content.

Action: to select to block
1. copy: to copy block
2. move: to move block
3. swap: to swap two blocks

Source: to select source block.
DESTINATION: to select the destination address.
Buffer range: to fill the buffer range in the destination
File range: to fill the file range in the destination

Note: If input wrong to the above selection, the program will send message to remind you.
Search: search for the goal data

Style: select the search style (use Binary or ASCII to search)
Action: to select the search start
Search next: to search the next one
First: the first search data
Target: the target data (ASCII or Binary)
Range:
 Start Address: search start address
 End Address: search end address
 Max range: the maximum buffer address
 File range: the maximum range of file address that you have already load.

Fill: fill in data
Fill data : select fill data:
 All fill bit 1 : All bit fill "1"
 All fill bit 0 : All bit fill "0"
User define : to fill the user define byte.
Range : to select and fill the range
 Max range : to fill the range with maximum butter range
 File range : to fill the range with the maximum file range

Get Check Sum: get the check sum from the Edit.

Range: to select the range of calculation
 Max range: the maximum butter range
 File range: the maximum file range

Insert File: Insert the file to the edit file. (only accept Binary type)
Use Map: use map to reflect the data of the edit file.
Buffer resize: resize the buffer

Size: select the length of buffer

4. Option

Introduction

These selections are for you to set the working environment.
Hide status bar: you can hide status bar by choosing this
Text color: you have 15 colors option to choose
Big tools bar & Small tools bar: you can shift big tools bar or small tools bar

5. Help

Main guide: You can choose this function if you have any question about WICE-4/8MA.
Device information: Show the information of emulated devices pinout like following.

6. Window

Cascade: to use cascade way for arranging windows

Tile(horizontal): to use horizontal way for arranging windows
Tile [vertical]: to use horizontal way for arranging windows

[arrange windows by horizontal way]

Arrange Icons: to use arrange icons for arranging windows

[icons arrangement]

Close All: to close all of windows
7. Tools Bar

- File---Load function
- File---Save function
- WICE Control box